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Abstract—Non-linear equations of laminar flow of a viscous incompressible fluid in the entrance region of a

circular tube have been solved by an exact numerical method to obtain the velocity of the flow in this region.

This velocity distribution is used in solving the energy equation numerically to obtain temperature profiles

under constant wall temperature and also under constant heat flux at the wall. The local Nusselt number
is calculated and the results are compared with those given by other workers.

NOMENCLATURE
radius of the tube;

axial distance from the entrance section ;

radial distance;

pressure above that of the inlet;

axial component of velocity;
fluid density;

coefficient of viscosity;
kinematic viscosity;

velocity at the inlet;
temperature;

thermal conductivity;
constant wall temperature ;
constant heat flux at the wall;
temperature at the inlet;
bulk mean temperature;
radial component of velocity.
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1. INTRODUCTION
ULRricHSON and Schmitz [1} have obtained
numerical solutions for the problem of simul-
taneous development of velocity and tempera-
ture profiles in the case of laminar flow of an in-
compressible viscous flow in the entrance region
of a circular tube. The values of the axial com-
ponent of velocity were taken from the work of
Langhaar [2] and those of the radial components
were obtained from the equation of continuity
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and Langhaar’s profiles. Thus, these calculations
were a refinement of the work of Kays [3], who
also used Langhaar’s veloicity profiles to calcu-
late the temperature profiles but, in his calcula-
tions, neglected the effect of the radial component
of veloicity. The main aim of Ulrichson and
Schmitz was to study the effect of this refinement
and their calculations have shown a significant
difference in the local Nusselt number in the
entrance region.

In Langhaar’s method the equations of flow,
which are of boundary layer type, are first
linearized with the help of the velocity at the
entrance and the resulting equations are solved
analytically. Since the velocity profile down-
stream differ considerably from those at the
inlet, this procedure introduces error in the
velocity across those sections which are farther
away downstream of the entrance section. A
finite-difference technique introduced by Bodia
and Osterle [4] has recently been used by
several workers. Even in this scheme the mo-
mentum equations are linearized at any section
X = X,, by means of the velocity at X = X,
— AX. Recently, a refinement of this procedure
was proposed by the author [S], where the
non-linear equations were solved iteratively and
that appears to avoid any error introduced due
to linearization.

The purpose of the present study is to estimate
the improvement in the results due to the refine-
ment introduced by Ulrichson and Schmitz 1]
and to ascertain as to how far their method leads
towards an improvement of the approximation
to the exact solution of the problem. It is,
therefore, necessary to obtain an exact solution
of the momentum equation by solving the non-
linear equations numerically. In this paper the
method given by the author [5] has been modi-
fied to include symmetric boundary conditions
on the axis of the tube and the energy equation is
then solved numerically. A higher order integra-
formula has been used to integrate the equation
along the radial direction. Most other details
remain the same.

In Section 2 the equations and boundary

conditions are discussed and in Section 3 the
method of solution is given. Some mathematical
details are given in appendix. Finally the results
are compared with those given by other workers

2. THE EQUATIONS AND BOUNDARY
CONDITIONS

The momentum equation, the equation of
continuity and the energy equation for the flow
in the entrance region are given by,
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The boundary conditions are

u=1uyv=0p=0forx=0,
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Depending upon the prescribed constant wall
temperature or prescribed constant heat flux
at the wall, two types of boundary conditions are
considered for the temperature equation (3).
In both these cases the boundary conditions at
r=0and at x = O are

t = tofor x = 0, O0Sr<a
% _ oforx > 0 0 (%)
”5; = orx =z 49, r=24u.
For constant wall temperature we have
t=1t,forxz 0, r=a 6)

and we shall call this problem 1. Similarly for
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constant heat flux at the wall we have

at  q,

—_— = /}, ,r =

=k forx 20,r=a

and this will be called problem 2.
Introducing non-dimensional quantities X,

R, U, V, P as well as 8 for problem 1 and T for

problem 2, we get the following equations:

BU ou 1dP U 1oU

Usx*tVsr~= 3ax Tk TRk’
I

U

@)

BV 10
(3X ROR

1

— (RV) = 00r§RUdR=—, )

2

U + —1-@) (10)

xR Pr \oR2

For problem 2 we obtain an equation similar to
(10) in which 6 is replaced by T The boundary
conditions are given by,
forXz0,U=V=0atR=1

ou

and—:a—-=V QatR =0,

X=0U=1,V=0for0O=SR <1

00 9 1 (0%
ROR

(11

at
For problem 1 we have,

for Xz 0,0 =1atR = 1and

00
—5§-0atR=0 (12)

alsoat X = 0,0 = 0forO SR < 1L

For problem 2 we have

T
forxz 0,§—= latR=1

dR

oT

X=0T=0for0SR < 1.

We shall solve equations (8-10) under boundary
conditions (11) for equations (8) and (9) together
with the appropriate boundary conditions, viz
{12) or (13), for equation {10).

OatR =0, (13)

also at
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3 METHOD OF SOLUTION

The derivatives in the X-direction are re-
placed by forward finite-differences, while the
other quantities are replaced by their averages.
Let us suppose that the solution U = U,,
P=P,0=0, at X=X, is known and that
we wish to find the solution U = U,, P = P,,
and =6, at X = X,, where X, > X, and
X, — X = I, say. We now make the following
substitutions:

U+ U, U U, - U,
U—- 2 ,U1+U2—W5X_‘ 3 *
—d_l—)'_Pz"Pla_61+82
- 1 2
_ 69“92""01
¢—91+02,a_i—‘ l £y
also from (9) and (10)
R a R
1 U 1
| 4 R‘gR(?XdR IRS 2 )
0 [

R
1
= ﬁSR(W— 2U,)dR.
0

Introducing these substitutions in equations
(8-10) and denoting derivatives with respect to
R by dashes, we get, after some re-arrangement,
the following equations:

R
Iw" —Ww? - P, + —I;LSRW dR
b
L
= =P — W -2U,W
R
w
T'gRUI drR, (14
1
fRWdR = 1, (15)
4]
¢ ¢ , _
5+ jpy — V4 — W = — 2Wb,. (16)
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In the case of problem 2, i.e. the cast of constant
heat flux, we replace 8 by T and ¢ by i where,
¢ = T, + T,. The resulting equation is similar
to (16) with ¢ replaced by v and 8, by T;. The
boundary conditions (11) are then replaced by

W=0forR = land%%/ = 0forR=0, (17
and the boundary conditions (12) by

¢ =2forR = Iandéq2 = 0forR =0, (18)

R
while the conditions (13) by
g}é =2forR =1
o (19)
and — = 0 fi = 0.
an R OforR =0

We shall first describe an iterative procedure
for solving equations {14) and (15), under the
boundary conditions (17), to obtain Wand P,.
From these, one can easily determine U, = W
— U,. During the process of computation one
also obtains V. Equation (16}, being linear is then
solved by a straightforward numerical procedure.

Let W, P, ,, be an approximate solution of
equation (14) satisfying (15) and (17), We shall
use this solution to linearize equation (14) and
obtain W, ,,, P, .., as a solution satisfying
(15), (17) and also the equation
W, — W, W,

.
m+17'm 2,me !}

R
W Lo
'}‘? RW,,,_(,ldR“—” ""'"Pl"'"EWm
0

R
2w
— 22U, W, + wﬁljlzul drR.  {20)
0
As discussed by Leigh [6], this method of
linearization leads to a convergent iterative
process for Wand P,. The process is repeated
until

;Wmi»l - Wm‘ <&,

where ¢ depends upon the accuracy desired.

Equations (20), as well as {16), are linear and
are solved by the usual finite-difference technique
of subdividing the interval 0 < R < 1 in n equal
parts of size h (nh = 1). The integrals appearing
in (20) are also evaluated numerically at each
mesh point and the equations (20) and (15) to-
gether are replaced by a set of (n + 1) simultan-
eous linear algebraic equations.

AW =C

where A isan (n + 1) x (n + 1) matrix and W
and C are (n + 1) column vectors. A and C are
known while W is given by

2 -
W = (—"Pz,mel’ Wm+ 1,1 Wm+12, 3 Wm+1,n)

where W, ; denotes the value of W, at
R = h(j — 1). Similarly equation (16} and boun-
dary conditions (18) and (19) are replaced by a
set of linear algebraic equations. These sets of
equations are solved by point. Gauss-Seidel
iterative method after rearrangement. Detailed
derivation of these equations is given in the
appendix.

Finally, when the iterations converge, we get
the value of Wat X = X, as well as the values of
¢ and  at X = X,. The same process can then
be applied to find the solution at X = X, + !
and so on.

Before proceeding to the next step we also
calculate the local Nusselt number N, given by

2a(0t/0r), -

(tw - [m)
where t,, 1s the mean temperature,
In case of problem 1 then

200/0r) =1,
“ - gm)

Nu:le

Nu=N, =

1
where 6,, = 2 [ UBRdR.
0

Similarly for problem 2, we have

2

NH=N2=(T—':—,1;5

1
with T,, = 2{ UTR dR.
)
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4. RESULTS

The main aim of this paper is to obtain by a
more accurate method, local Nusselt numbers
for the heat-transfer problem with constant wall
temperature and also for the problem with
constant heat fJux, and to compare the results
with those given by Ulrichson and Schmitz [1].
However, during the process of calculation one
obtains without any extra effort and more
accurately than by any other method known so
far, the velocity profiles, the pressure distri-
bution, an estimate of entrance length, the tem-
perature profiles and various other results.

Near the entrance X = 0, the mesh size [ was
taken very small (= 0.00005), since the variation
of the velocity in this region is large This was
then gradually increased up to 0-0016. Although
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FiG. 3. Generalized velocity profiles for constant wall
temperature and Pr = 0-7.

the method is stable for any mesh ratio § = I/h?,
h was chosen such that § = I/h* < 1 for smallest
[. To ascertain whether the mesh size was
reasonable, the computations were repeated by
taking double mesh size in X. The value of ¢ for
convergence was chosen to be 107% and the
number of iterations varied from 8 in the first
step to 4 after a few steps. The computations
were carried on up to a point X = 0-2145, where
the velocity at two neighbouring points differed
by unity in the fourth decimal place. For the
calculation of temperature profiles, the Prandtl
number Pr was assumed to be 0-7. The computa-
tions were done on an IBM 7040 and took little
less than an hour.

From an overall heat balance up to any point
X, we have

(-8y/0-6,)

—-—= Kays
——— This work

F1G. 4. Generalized temperature profiles for constant wall
temperature and Pr = 0-7.
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T, = 2X/Pr

which is independent of the velocity distribution
and hence can be used as a check on the accuracy
of numerical solution. The maximum difference
T, — 2X/Pr was found to be 0-006 at X = 0-2.
The formula used for numerical integration of
T,, is given in appendix. The values of local
Nusselt numbers together with those obtained
by other workers are shown in Figs. 1 and 2.
Both the components of velocity, the pressure
distribution, the shear-stress at the wall, the
valuesof0.T,0,,T,,,N,,N,,etc ,wereall obtained
as out-put. Some velocity and temperature
profiles are shown in Figs. 3 and 4,

5. CONCLUSION

Comparison of the results in Figs. 1 and 2
show that so far as local Nusselt number is
concerned, the modification introduced by
Ulrichson and Schmitz improve the results
considerably. In case of constant heat flux the
results obtained by Ulrichson and Schmitz are
in excellent agreement with those obtained
here, for X/Pr > 0-008. In the earlier stages of
flow development the discrepancy. is still large.
From these comparisons it appears that the
effect of radial component of velocity is more
significant than those due to linearization of
equations of motion except in the immediate
neighborhood of the entrance section. However,
if the velocity, the pressure and temperature
distributions are required more accurately than
are given by Langhaar’s velocity profiles, the
finite-difference technique yields better results
[4, 5]. The same procedure as described here
can also be used for other problems of this
nature.
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APPENDIX

Let us divide the interval 0 £ R < 1 into
n equal parts (choose n even) and denote W,
at R = jhby W,, ;4. From (17) then

Wm,n+1 = Wm+1,n+1 =0,

' ' _
m+i,1 = Wm,l - 0

In equation (20) we replace W, , and W, by
mi1 = (Wm+1,k+1 - 2Wm+1,k +
Wm+1,k—1)/h2

Wa
R

Wk 1 = Wak-1 _ 3o
2R%(k — 1)

=57

k=273 ,n;

also a; = 0. Using Simpson’s rule and also
the boundary condition at R = 0 we can write

R (k= 1)h 2

h
SRUldR = J RUdR = 3B,
0

where

B, =0, B,=3U,,+ U,
By=3-U,,+8U,,+3U,;)
and
By =By + (k- DU,
+ 4k —2U; 41+ k=3,
k=45 n+1
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Define
Ci= — Py = 3oy — 2U (Wi + 2B,
k=12"n,
and
Cn+1 = ZBR'*'I and ﬁ = l/kz.

By introducing these quantities, equation (20)
can be replaced by AW = C, where
= {Cbcza' Ry O 1}
and the matrix A can easily be written down.
As before we can also write

h— 1 )
SRWdRz RWdR:-—}—;—Ak
i}
so that
(2B, — 4y)
V., = . ceopge
* 3hk = 1) for k=1,2,--'n

In the energy equation (16) we replace ¢ and
¢ by

¢ = (¢k+1 — 2 + ¢k-1)/h3 and
¢ = (Prs1 — Px-1)/2h

Using these finite differences and the boundary
conditions ¢,., = 2 and ¢, =0 from (18)
we can replace equation {16) by a set of simul-
taneous algebraic equations.

For problem 2 the boundary conditions (19)
are replaced by Y, = ¥, and ¥, , — 4y, +
3‘1/1;-!- 1= 4}3

For finding the mean values 8, and T, we
use the same integration formula as was used for

R
{ RU, dR, because the conditions at R = 0 are
0

the same.

Résumé—Les équations non-linéaires de I'écoulement laminaire d’un fluide visqueux incompressible dans

ia région d’entrée d’un tube circulaire ont été résolues par une méthode numérique exacte pour obtenir fa

vitesse de 'écoulement dans cette région. Cette distribution de vitesse est employée pour résoudre

numériquement I'équation de I'énergie afin d’obtenir les profils de température avec des températures

pariétales constantes et aussi avec un flux de chaleur constant 4 la paroi. Le nombre de Nusselt local est
calculé et les résultats sont comparés avec ceux donnés par d’autres chercheurs.

Zusammenfassung—Die nichtlinearen Gleichungen fiir die laminare Strémung einer zihen, inkompressib-

len Fliissigkeit im Anglauf eines Kreisrohres wurden mit einer genauen numerischen Methode geldst, um

die Strémungsgeschwindigkeit in diesem Bereich zu ermitteln. Diese Geschwindigkeitsverteilung wurde

bei der Losung der Energiegleichung verwendet, um die Temperaturprofile bei konstanten Wandtempera-

turen, wie auch bei konstanter Wirmestromdichte an der Wand zu erhalten. Die daraus berechnete
ortliche Nusselt-Zahl wird mit den Ergebnissen anderer Autoren verglichen.

Annorauua—/aa onpeneneHus moxelfl CKOPOCTH HA BXOJRHOM YYacTHe KPYTHOHL TpyOHE C

NOMOIIBIO TOYHOTC YHCHEHHOTO MeTONA pelleHH HeJuHelHbe YpPaBHEHHMH JIAMHHAPHOTO

TEUEHHA BASKON HECHKUMAEMON UIKOCTH, JTH pacupelededus CKOPOCTH UCTIOAB3YIOTCA NIPH

UMCEHHOM DeIieHUH YDABHEHNH SHEPIUH A NOJyYeHUA npoduelt TeMuepaTyp B Cay4asnx

MOCTOSHHOM TeMIepaTyphl CTEHKH M IMOCTOSIHHOM TeIIOBOM TIOTOKe. PacCYUTAHO JOKAIBHOE

suavenne kpurepua HycceneTa n nmpoBefeHo cpaBHeHme C pe3yiabTaTaMy JPYrux ucCiaepo-
Baresel.



