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Abstract-Non-linear equations of laminar flow of a viscous incompressible fluid in the entrance region of a 
circular tube have been solved by an exact numerical method to obtain the velocity of the flow in this region. 
This velocity distribution is used in solving the energy equation numerically to obtain temperature profiles 
under constant wall temperature and also under constant heat flux at the wall. The local Nusselt number 

is calculated and the results are compared with those given by other workers. 

NOMENCLATURE 

radius of the tube; 
vRe vu 

K C-Z-’ 
axial distance from the entrance section ; 
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UO V’ 

radial distance ; 
pressure above that of the inlet; 
axial component of velocity ; 
fluid density ; 
coefficient of viscosity ; 
kinematic viscosity ; 
velocity at the inlet; 
temperature ; 
thermal conductivity; 
constant wall temperature ; 
constant heat flux at the wall ; 
temperature at the inlet; 
bulk mean temperature ; 
radial component of velocity. 
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Non-dimensional quantities 

Re, Reynolds number y; 

x, =:i 

R, =I; 
a 

u, =;; 

Pr, Prandtl number, 7; 

8, 
t - t, = -- 

t, - to’ 

T 
_w-to). 

ah ’ 
N,, local Nusselt number, = N, 

kf 
0 ar (r=a) 
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1. INTRODUCTION 
ULRICHSON and Schmitz [l] have obtained 
numerical solutions for the problem of simul- 
taneous development of velocity and tempera- 
ture profiles in the case of laminar flow of an in- 
compressible viscous flow in the entrance region 
of a circular tube. The values of the axial com- 
ponent of velocity were taken from the work of 
Langhaar [2] and those ofthe radial components 
were obtained from the equation of continuity 
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16 R. MANOHAR 

and Langhaar’s profiles. Thus, these calculations 
were a refinement of the work of Kays [3], who 
also used Langhaar’s veloicity profiles to calcu- 
late the temperature profiles but, in his calcula- 
tions, neglected the effect of the radial component 
of veloicity. The main aim of Ulrichson and 
Schmitz was to study the effect of this refinement 
and their calculations have shown a significant 
difference in the local Nusselt number in the 
entrance region. 

In Langhaar’s method the equations of flow, 
which are of boundary layer type, are first 
linearized with the help of the velocity at the 
entrance and the resulting equations are solved 
analytically. Since the velocity profile down- 
stream differ considerably from those at the 
inlet, this procedure introduces error in the 
velocity across those sections which are farther 
away downstream of the entrance section. A 
finite-difference technique introduced by Bodia 
and Osterle [4] has recently been used by 
several workers. Even in this scheme the mo- 
mentum equations are linearized at any section 
X = X,, by means of the velocity at X = X, 
- AX. Recently, a refinement of this procedure 
was proposed by the author [S], where the 
non-linear equations were solved iteratively and 
that appears to avoid any error introduced due 
to linearization. 

The purpose of the present study is to estimate 
the improvement in the results due to the refine- 
ment introduced by Ulrichson and Schmitz [l] 
and to ascertain as to how far their method leads 
towards an improvement of the approximation 
to the exact solution of the problem. It is, 
therefore, necessary to obtain an exact solution 
of the momentum equation by solving the non- 
linear equations numerically. In this paper the 
method given by the author [S] has been modi- 
lied to include symmetric boundary conditions 
on the axis of the tube and the energy equation is 
then solved numerically. A higher order integra- 
formula has been used to integrate the equation 
along the radial direction. Most other details 
remain the same. 

In Section 2 the equations and boundary 

conditions are discussed and in Section 3 the 
method of solution is given. Some mathematical 
details are given in appendix. Finally the results 
are compared with those given by other workers 

2. THE EQUATIONS AND BOUNDARY 
CONDITIONS 

The momentum equation, the equation of 
continuity and the energy equation for the flow 
in the entrance region are given by, 

au au 
t$---+u-= 

8X 2% 
(1) 

au Id 
~+---~(~l=O 

or 27c i ru dr = uOna2, 
0 

The boundary conditions are 

u = uo,v = 0,p = Oforx = 0, 

OSr<a; 

24 = u= oforx > 0,r = a; 

e=Oforx>O r=O. 
ar 

cc > 

(4 

(31 

(41 

Depending upon the prescribed constant wall 
temperature or prescribed constant heat flux 
at the wall, two types of boundary conditions are 
considered for the tem~rature equation (3). 
In both these cases the boundary conditions at 
r = 0 and at x = 0 are 

t = to for x = 0, OSr<a 

dt 
75r;; = 0 for x 2 0, I = 0. 

For constant wall temperature we have 

t = t,, for x 3 0, r=Q 161 

and we shall call this problem 1. Similarly for 
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constant heat flux at the wall we have 

and this will be called problem 2. 
Introducing nondimensional quantities X, 

R, U, V, P as well as 8 for problem 1 and Tfor 
problem 2, we get the following equations : 

au 
5% +vg= -;g+g+;g, (8) 

1 

g+k&(RV)=Oor RUdR=i, 

1 

(9) 

For problem 2 we obtain an equation similar to 
(10) in which 6 is replaced by 7: The boundary 
conditions are given by, 

forXsO;U= V=OatR= 1 

andE=V--OatR=O 
dR - 

t (11) 

at X=O,U=I,V=OforO$R<l. 

For problem 1 we have, 

forX& 0,8= latR= land 

ae 
x=OatR=O 

(12) 
alsoatX=O,@=OforOSR ~1. 

For problem 2 we have 

forx>OE=latR 1 /,‘8R = 

andaT= OatR = 0, 
aR (13) 

also at X = 0, T = 0 for 0 I; R < 1. 

We shall solve equations (8-10) under boundary 
conditions (11) for equations (8) and (9) together 
with the appropriate boundary conditions, viz 
(12) or (131, for equation (10). 

B 

3 METHOD OF OLSON 

The derivatives in the X-direction are re- 
placed by forward fmitedifferences, while the 
other quantities are replaced by their averages. 
Let us suppose that the solution U = U,, 
P = P,, 0 = 8, at X = X, is known and that 
we wish to find the solution U = Uz, P = P,, 
and 6’ = 0, at X = X,, where X, > X, and 
x, - x, = E, say. We now make the following 
substitutions : 

u_ Ul -t- u2 au u2- u, 
2 

,u,+u,=w~= 1 , 

dP P, - P, 01 + 8, -=: 
dX 1 

,e=-_, 

also from (9) and(lO) 

R s f&jR= _‘RR(U 
ax IR 

0 
s 2 - U,)dR 

0 

R 

R(W- 2UJdR. 

0 

Introducing these substitutions in equations 
(8-10) and denoting derivatives with respect to 
R by dashes, we get, after some re-arrangement, 
the following equations : 

R 

1W" - w2 -Pp,+; RW dR 
s 
0 

=- P, -;w’-2u,w 

R 

+ T RU1dR, 

! 
(14) 

!RWdR = 1, (1% 

I$ + g - fV#’ - wqj = - 2w0,. (16) 
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h the case Of problem 2, i.e. the G&d Of constant 
heat flux, we replace 8 by T and # by I) where, 
# = 7” + T2. The resulting equation is similar 
to (16) with 4 replaced by $ and 0, by TI. The 
boundary conditions (1.1) are then replaced by 

w= OforR = IandE OforR - 0 dR= -> (17) 

and the boundary conditions (12) by 

#= 2forR= ” 1 and* = OforR = U, (18) 

while the conditions (13) by 

ati %=2forR=1 

and ~=OforR-0. 
aR 

(19) 

We shall first describe an iterative procedure 
for solving equations (14) and (15), under the 
buundary conditions (17), to obtain Wand P, _ 
From these, one can easily determine U, = W 
- U,. During the process of computation one 
also obtains E Equation (15), being linear is then 
solved by a straightforward numerical procedure. 

Let w,, &,m be an approximate solution of 
equation (14) satisfying (15) and (17). We shall 
use this solution to linearize equation (14) and 

obtain Kflr &+ 1 as a solution satisfying 
(I$), (17) and also the equation 

R 

+ 2 RWm+, i dR= -P,-;W; 

0 

- 2UIWm + q”RU,dR. 
s 

(20) 

0 

As discussed by Leigh [6], this method of 
linearization leads to a convergent iterative 
process for Wand P,. The process is repeated 
until 

where E depends upon the accuracy desired. 

Equations (20), as well as (16), are linear and 
are solved by the usual finite-difference technique 
of subdividing the interval 0 < R < 1 in n equal 
parts of size h (nh = 1). The integrals appearing 
in (20) are also evaluated numerically at each 
mesh point and the equations (20) and (15) to- 
gether are replaced by a set of (n + 1) simultan- 
eous linear algebraic equations. 

AW-C 

where A is an {n + 1) x fn + 1) matrix and W 
and C are frr + 1) column vectors. A and C are 
known white W is given by 

where W,, r,j denotes the value of “I+$,+, at 
R = h(j - 1). Similarly equation (16) and boun- 
dary conditions (18) and (19) are replaced by a 
set of linear algebraic equations. These sets of 
equations are solved by point. Gauss-SeideI 
iterative method after rearrangement. Detailed 
derivation of these equations is given in the 
appendix. 

Finally, when the iterations converge, we get 
the value of Vat X = X,, as well as the values of 
4 and J/ at X = X,. The same process can then 
be applied to find the solution at X = X, + I 
and so on. 

Before proceeding to the next step we also 
calculate the local Nusselt number IV1 given by 

Ntr = N, = h;;f/Fb;u) 
W WI 

where I, is the mean temperature. 
In case of problem 1 then 

where fl, = 2) Ut?R dR. 
0 

Similarly for problem 2, we have 

with T, = 2) UTR dR. 
0 
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1. Koys 
2. Ulrichson and Schmitt 
3 This work 
4. Developed flow 

FIG. 1. Local Nusselt number for constant wall temperature 
and Pr = 0.7. 

-- Keys 
- This work 
-- Ulrichscn and Schmitz 
--- Developed flow 

35- 

30- 

FIG. 2. Local Nusselt number for constant wail flux and 
Pr = 0.7. 
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4. RESULTS 

The main aim of this paper is to obtain by a 
more accurate method, local Nusselt numbers 
for the heat-transfer problem with constant wall 
temperature and also for the problem with 
constant heat Qux, and to compare the results 
with those given by Ulrichson and Schmitz [I]. 
However, during the process of calculation one 
obtains without any extra effort and more 
accurately than by any other method known so 
far, the velocity profiles, the pressure distri- 
bution, an estimate of entrance length, the tem- 
perature profiles and various other results. 

Near the entrance X = 0, the mesh size 1 was 
taken very small (= 0.00005), since the variation 
of the velocity in this region is large This was 
then gradually increased up to 0.0016. Although 

2.0 r 

FIG. 3. Generalized velocity profiles for constant wall 
temperature and Pr = 0.7. 

the method is stable for any mesh ratio /? = I/!?, 
h was chosen such that p = l/h* < $ for smallest 
1. To ascertain whether the mesh size was 
reasonable, the computations were repeated by 
taking double mesh size in X. The value of E for 
convergence was chosen to be 10e6 and the 
number of iterations varied from 8 in the first 
step to 4 after a few steps. The computations 
were carried on up to a point X = 0.2145, where 
the velocity at two neighbouring points differed 
by unity in the fourth decimal place. For the 
calculation of temperature profiles, the Prandtl 
number Pr was assumed to be 0.7. The computa- 
tions were done on an IBM 7040 and took little 
less than an hour. 

From an overall 
X, we have 

20 r 

lb- 

A 

14= 

6- 

heat balance up to any point 

02 0.4 0.6 I.0 
R 

Generalized temperature profiles for constant wall 
temperature and Pr = 0.7. 
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T, = 2X/Pr 
which is independent of the velocity distribution 
and hence can be used as a check on the accuracy 
of numerical solution. The maximum difference 
T, - 2X/Pr was found to be 0.006 at X = 0.2. 
The formula used for numerical integration of 
T, is given in appendix. The values of local 
Nusselt numbers together with those obtained 
by other workers are shown in Figs. 1 and 2. 
Both the components of velocity, the pressure 
distribution, the shear-stress at the wall, the 
values of 8. T, 6,,,, T,, N,, N,, etc , were all obtained 
as out-put. Some velocity and temperature 
profiles are shown in Figs. 3 and 4. 

5. CONCLUSION 

Comparison of the results in Figs. 1 and 2 
show that so far as local Nusselt number is 
concerned, the modification introduced by 
Ulrichson and Schmitz improve the results 
considerably. In case of constant heat flux the 
results obtained by Ulrichson and Schmitz are 
in excellent agreement with those obtained 
here, for X/Pr > 0.008. In the earlier stages of 
flow development the discrepancy is still large. 
From these comparisons it appears that the 
effect of radial component of velocity is more 
significant than those due to linearization of 
equations of motion except in the immediate 
neighborhood of the entrance section. However, 
if the velocity, the pressure and temperature 
distributions are required more accurately than 
are given by Langhaar’s velocity profiles, the 
finite-difference technique yields better results 
[4, 51. The same procedure as described here 
can also be used for other problems of this 
nature. 
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AI’PENDM 

Let us divide the interval 0 s R < 1 into 
equal parts (choose n even) and denote W, 

at R = jh by W,, j+ 1. From (17) then 

W m,n+l - - Wm+l,,+l = 0, 

w;, 1, l = wg, 1 = 0. 

In equation (20) we replace WL+ 1 and Wk by 

w;+, = (wm+,,k+, - 2Wm+t,k -t 

W m+l,k-&h2 

w:, wm,k+l - wm,k-l 3ak 

R- 2h2(k - 1) = h2’ 

k = 2,3, . , n ; 

also a, = 0. Using Simpson’s rule and also 
the boundary condition at R = 0 we can write 

qRL’,dR=(k~&C.ldR=;Bk 

0 0 

where 

B, = 0, B, = gut,, + UI,,), 

B3 = 8-u1.1 + gut.2 + 3u1.3) 

and 

& = &wl + (k - l)ul,k 

+ 4(k - 2)Ul,k-1 + (k - 3)Ul,k-2 

k = 4,5,. . . , n + 1. 
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Define 
Gk= -PI - 3kk - 2u,,kw,.k f 2akBk 

k = 1,2, *. * n, 
and 

G Ilfl = 28,+, and j3 = l/h2. 

By introducing these quantities, equation (20) 
can be replaced by A#’ = C, where 

GT = {G,, G,, I . . , C,+ 1) 
and the matrix A can easily be written down, 

As before we can also write 
R 

s fh-l)h 

RWdR= 
s 

RWdR=$-& 

0 0 

so that 

v, = m3k - Ak) 
3h(k - 1)p 

for k = 1,2;.*n. 

Jn the energy equation (16) we replace 4“ and 

9’ by 

Using these finite differences and the boundary 
conditions #J,+& = 2 and F. = 0 from (18) 
we can replace equation (16) by a set of simul- 
taneous algebraic equations. 

For problem 2 the boundary conditions (19) 
are replaced by tiz = I++~ and )(/_, - 4$” f 
3$,+1 = 4h. 

For finding the mean values 8, and T, we 
use ihe same integration formula as was used for 

1 RU, dR, because the conditions at R = 0 are 

the same. 

R&m&--Les equations non-iin~~s de ~~oulernen~ laminaire d'un fluide visquenx incompressibIe dam 
la region d’entriie d’un tube circulaire ont 6th resolues par une m&hode numerique exacte pour obtenir la 
vitesse de l’ecoulement dans cette region. Cette distribution de vitesse est employee pour rboudre 
numQiquement I’tquation de l’energie ahn d’obtenir les proms de temperature avec des temperatures 
par&ales con&antes et aussi avec un flux de chaieur constant a la paroi. Le nombre de Nusseh local est 

calcuie et les rdsultats sont compares avec ceux donnis par d’autres chercheurs. 

Zusamm~nf~ung-Die nicht~inear~ Gleichungen f@r die laminare Striimung einer z&hen, inkompressib- 
len Fliissigkeit im Anglauf eines Kreisrohres wurden mit einer genauen numeriscben Methode gel&t, urn 
die Str~mungsge~hw~~gk~t in diesem Bereich zu ermitteln. Diese ~~h~ndi~eitsve~eiju~g wurde 
bei der Lijsung der Energiegleichung verwendet, urn die Temperaturprofile bei konstanten W~dtem~ra. 
turen, wie such bei konstanter Warmestromdichte an der Wand zu erhalten. Die daraus berechnete 

iirtliche Nusselt-Zahl wird mit den Ergebnissen anderer Autoren verglichen. 

AaaoTaQwf-_Anfi 0rrpezwreHliH nojret c~opocT5i wa BX~~H~M ysacrne KpyrJrorI TpyBar C 
nomorqbm TOYHOI-0 Y~c~eHHoro MeToEa pemeztar He~~He~H~e ypassewfs JlaM;iHap~OrO 

Te4eHMR BRBICO% HeC~~~aeMO~ lKH~IZQCTK.3TM paCnpefieJieHAU CKOPOCTH HCnOJlb8yl0TCR npllr 

~~c~e~~o~ pemeHw ypanHe~~K 3~epr~~ gnus ~0~yqeH~~ ~~o#~~e~ Te~~epaTyp n caysaRx 
IIOCTOF?HHOt TeMIIepaTypbI CTeHWl II IIOCTOIIHHOM TeIIJIOBOM IIOTOHe. PaCCWiTaHO JIOKWIbHOe 

3IIaYeHLle KpHTepHR HyccenbTa R IIpOBeAeHO CpaBHeHtIe C pe3yJrbTaTaMLI RpyrMX HCCJWIO- 

aaTeneK 


